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Asymptotic Theory for Weighted Least Squares Estimators in
Aalen’s Additive Risk Model

L >
IAN W. MCKEAGUE ‘
Do B // ) &.
Abstract. Let h(2|Z;) be the conditional huard functxon for tha survival time ; v/% ¢ Ao iy .
of an individual i given the p-dimensional covunate\procua Z; (t) We study--—— .
inference for Aalen's additive risk model h(t|2}) = Z;{t)'a(t), where « is a p- s ,
vector of unknown hagard functions. The theory of counting processes is used 'y
to obtain weak convergence results for weighted least squares estimators of the [
hazard functions and the cumulative hagard functions based on continuous data. ,l‘:
Results for weighted least squares estimators based on grouped data are also ) “Q.
described. /}'("l_ "4. "‘,,{';5 ,r . "“""\)'C;lb . ) .
! \
- " "‘

1. Introduction.

The proportional hazards regression model of Cox (1972) for the analysis of
censored survival data has had considerable influence on the theory and practice
of biostatistics. In recent years this has led to the study of a wide variety of o
hazard function based regression models which generalize Cox’s model in some ‘
way. For a comprehensive list of references to such work see the paper of Ritov R
and Wellner (1987, in these proceedings). -

Let h(t|Z;) denote the conditional hasard function for the survival time T; -
of an individual 1 given the covariate process Z;(t) = (Z(t),..., Zip(t))',t > 0.

The most general model for h(t|Z;) that seems to be amenable to statistical -
. Accession For : A
analysis is

h(t|Z;) = alt, Z;(t)), (1.1) | NTIS GRA&I E ‘.
' DTIC TAB O }
where a is a completely general (unknown) function of time and the state of the | Unannounced 0 :
covariate process. Inference for this model has been studied by Beran (1981) { Justification :t
and Dabrowska (1987a, 1987b) in the case of time-independent covariate, and o\
by McKeague and Utikal (1987) in the case of time-dependent covariate process. B !
Although this model is attractive from a theoretical standpoint, in that it can Distribution,

encompass goodness of fit tests for any particular model, its large sample size [———— -~ -~ :\
requirements make it difficult to apply in practice. AVﬂ“@u#w Codgs N
Avail and/or T
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2 Aalen’s Additive Risk Model

If we assume that a(¢,0) = O and ignore all terms higher than first order
in Taylor’s expansion of a(t,z) about z = 0, then the model (1.1) reduces to
Aalen’s (1980) additive risk model:

h(tlZ) = a;(t) Z5(t), (1.2)

J=1

where a;,...,a, are unknown functions of time. Aalen’s model, which we study
in this paper, is capable of providing information concerning the temporal influ-
ence of each covariate not possible to obtain using Cox’s model, yet it does not
require the extremely large sample size needed for fitting the general model (1.1).
McKeague (1986) studied estimation for @ = (ay,...ap)’ using the method of
sieves. Recently, Huffer and McKeague (1987) proposed various weighted least
squares estimators for a and its integrated counterpart A(:) = ft.o a(s)ds. The
purpose of the present paper is to establish weak convergence results for such
weighted least squares estimators in the case of continuous data. Weak conver-
gence results for grouped data based weighted least squares estimators are given
in McKeague (1987). In the grouped data case only the total number of uncen-
sored survival times falling in successive time intervals and the corresponding
total times at risk, for all levels of the covariates, are assumed to be available,
whereas in the continuous data case treated here the exact values of the un-
censored survival times T, ..., T,, are assumed to be known. Not surprisingly,
better results can be obtained in the continuous data case.

In Section 2 we describe the counting process formulation of Aalen’s model.
The weighted least squares estimators based on continuous data are defined in
Section 3.1 and compared with their grouped data analogues in Section 3.2.
Proofs of the main weak convergence results, stated in Section 3.1, are given in
Section 4.

2. Aalen’s model in the counting process framework.

Suppose that the observable portion of the ith individual’s lifetime T} is
given by T = min(T;, C;), where C; is conditionally independent of T; given the
covariate process Z;. Also suppose that T; and C; are absolutely continuous. The
observations consist of i.i.d. triples (f", 6,Y:),i=1,..,n,where§; = I(T; < C;)
and Y; is the process Yi(t) = Z;(t)I(T: > t). Now let N;(t) denote the indicator
of an uncensored failure for individual ¢ prior to time ¢:

Ni(t) = I(j‘t < tlsl' = 1)1

and suppose that each covariate process Z; is left-continuous with right-limits.
Under Aalen’s model (1.2) the counting process N; has intensity

X(t) = D a;(6)Yis () (2.1)

i=1

with respect to the right-continuous filtration % = o(Ni(s), ¥i;(s-),0 < s <

t,i > 1,7 =1,...,p). Also, no two of the counting processes Ny,..., N, jump
simultaneously.
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lan W. McKeague ]

More generally, let N(t) = (Ny(t),...,Na(t))',t € [0,1] be a multivariate
counting process with respect to a right-continuous filtration (%), i.e. N is
adapted to the filtration and has components N; which are right-continuous step
functions, zero at time zero, with jumps of size +1 such that no two components
jump simultaneously. Let A be the compensator of N, so that N = A + M,
where M = (M,,...,M,) and M,,..., M, are local martingales. Suppose that
A is absolutely continuous (a.s.): A(t) = f; A(s)ds, where A = (A4,...,A,)
and Aj,..., A, are nonegative predictable processes (intensity processes). The
counting process version of Aalen’s model is given by

A(t) = Y(¢t)a(t), (2.2)

where a = (ay,...,ap)’ is a vector of unknown nonrandom integrable functions
and Y (t) = (Y;;(t)) is an n X p matrix of covariate processes assumed to be pre-

dictable and locally bounded. For fixed ¢3,0 < t < 1, denote Alt) = f:o afs)ds,
where tg < ¢t < 1. The statistical problem is to estimate a and A.

3. The weighted least squares estimators.

3.1. The continuous data case.

Suppose that the entire sample paths of tl}e process N and Y are observed
over [0,1]. Aalen (1980) proposed estimators A of A of the form

¢
A(t) = / Y~ (s)dN(s), (3.1)

to
where Y 7 (s) is a predictable generalised inverse of Y (s). In the case p = 1 with

(Y= () = (kz::l Yu(s))—l, i=1,..,n

(where 1/0 = 0) A is the Nelson-Aalen estimator for which a general asymp-
totic theory was derived by Aalen (1978). For p > 1 Aalen suggested using
Y~ (s) = (Y'(s)Y(s))~1Y'(s), where here and in the sequel, for any square ma-
trix (or scalar) D, D~ denotes the inverse of D if D is invertible, the zero matrix
otherwise. Aalen observed that this choice of Y~ can be motivated by a formal
least squares principle and that the resulting estimator

iw=[ V(o) ¥ ()" 1¥ (s)N o), (5.2

referred to as Aalen’s least squares estsmator, probably gives reasonable but not
optimal estimates of A. Recently Huffer and McKeague (1987) suggested using
the following generalized inverse of Y (s):

Y= (o) = (Y (s)W ()Y () Y ()W (), (37)

P A R L
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4 Aalen’s Additive Risk Model

where W (t) is the nxn diagonal matrix with ith diagonal entry Wi(t) = (A (t)) !
and

P
Xilt) =D a;(0)Yi;(2), (3.4)
i=1
where &; is a predictable estimator of a;. The estimator &; is taken to be the
jth component of the smoothed least squares estimator

alt) = o / ( )dA(a), (3.5)

where K is a left-continuous bounded kernel function having integral 1, support
[0,1] and b, > 0 is a bandwidth parameter. The choice of generalized inverse
(3.3) defines what we call the wesghted least squares estimator

A(t) = /t ‘(Y'(a)W(s)Y(s))—lY'(s)W(a)dN(a). (3.6)

Observe that in the case of a single covariate the weighted least squares estimator
coincides with the Nelson-Aalen estimator and no estimate of the weights W;(t)
is needed. In order to obtain an estimator of a a itself we can smooth A to
obtain a smoothed weighted least squares estsmator

a(t)=31— ‘f{(‘;’)dj(s), to<t<l1, (3.7)

to n
where K is a bounded kernel function having integral 1, support [—1,1] and
bn > 0 is a bandwith parameter. In the case of a single covariate the smoothed

weighted least squares estimator coincides with the kernel estimator introduced
by Ramlau-Hansen (1983).

Let Dfto, 1] denote the product of p copies of the Skorohod space D|to, 1]
and endow it with the Skorohod product topology. Also denote

I',.‘;k (t) = iiyu (t)yik (t)r

iijkg(t) = %ix:(t)ylk (t)Yie(t),

Vi) = 23 ¥os (¥ ().

Our first result, which gives the asymptotic distribution of Aalen’s least
squares estimator (3.2), employs the following conditions:

(A1) (Asymptotic stability). For j,k,£ = 1,...,p there exist continuous func-
tions L;x and R;x, defined on [0, 1] such that

sup |L;u(t) - Lix(t)] S0,
te[0,1)

‘S(“P |Rjke(t) — Ryxe(t)| 20.

5\“ '-.‘-s'-."\ LA LY '\.-'-\ ~.' WAL AN -.\'-.' '-.~.'-'




Ian W. McKeague 5

{A2) (Lindeberg condition). For each 7 =1,...,p

n"} sup [¥(2)[50.

(A3) (Asymptotic nondegeneracy condition). The pxp matrix L(t) = (L,«(t))
in (A1) is nonsingular for all ¢ € [0,1].

THEOREM 3.1. Let to = 0. Under conditions (A1)-(A3)
Vi(A-A) % m in D[o,1P

where m is a p-variate continuous Gaussian martingale with mean sero and
covariance function

Cov(m;(t), mk(t)) = Z Z Z/o Rqu(3)(L_l(")):'v(L-1("))kwau(s)d-’-
u=lv=1lw=1

In order to establish our weak convergence results for the weighted least squares
estimator (3.6) and the smoothed weighted least squares estimator (3.7) we need
the following additional conditions:

(B1) (Asymptotic stability). For 5,k = 1,...,p there exist continuous func-
tions Vj, defined on [0, 1] such that

- P
sup |Vik(t) — Vyi(t)|—0.
te(0,1]

(B2) (Bounded covariates). The processes Y;;,1 > 1,7 = 1,...,p are uni-
formly bounded.

(B3) (Asymptotic nondegeneracy condition). The pxp matrix V (t) = (V;x(t))
in (B1) is nonsingular for all ¢ € [0, 1].

(B4) (Intensity regularity condition). There exists § > 0 such that if ¥;,(t) #
0 for some j = 1,...,p then A;(t) > 6.

(B5) The functions ay,..., a, are continuous.

THEOREM 3.2. Suppose that conditions (A1), (A3), (B1) - (BS5) hold, b, —
0,nb2 — oo and the kernel function K has bounded variation. Let 0 < to < 1.
Then

Vn(A - A) 2 m' in Dito, 1P

where m' is a p-variate continuous Gaussian martingale with mean sero and
covariance function

Cov(m (1), i (1) = [ (V™ (s))nds.
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THEOREM 3.3. Suppose that conditions (A1), (A3), (B1) - [B4) hold, b, — o
0,nb2 — oo,nb, — oco,nb2 — 0 and ay,.. ., ap have bounded derivatives in a Y
neighbourhood of t, where 0 <ty <t < 1. Then D)
(nBa) ¥ (&(t) - af(2))
converges in distribution to a p-dimensional normal distribution with mean sero Sy
and covariance matrix V ~1(t) f_ll K?(s)ds. o
In order to apply the weak convergence results, to obtain hypothesis tests i
and confidence bands for instance, it is necessary to estimate the covariances of .,‘
the limiting Gaussian distributions. Using Lenglart’s inequality it can be shown :_
that o,
n ¢ "’. X
w3 [ (@D~ (Dudi(s) %
=1 to .Jl
.'. -
is a uniformly consistent estimator of Cov(m(t), mj (t}) over [to, 1], where Y~ (s)
is given by (3.3). Lemma 4.3(c) shows that V' ~1(¢t) is a uniformly consistent N
estimator of the matrix function V=1(t) over [t, 1]. ': :
.
3.2. The grouped data case. :‘:
‘ »
‘ Suppose that the data are grouped into d,, time intervals ,("), r=1,...,d, -
| which partition [0, *! and depend on the sample size n. It is natural to assume > ]
w that the hazard function ay,..., a, are constant over each interval, giving rise to f'_;
| a sequence of Aalen models indexed by n. The hazard functions a(ln), .. .,oz;.") ;‘.-
| in the nth model are constrained to be the piecewise constant approximations N
| to fixed underlying hazard functions ay, ..., ap: <
(n) 1 (n) 2
a; () = z 1o aj(s)ds for te I'™ P
where £, = zi"’ is the length of ,("). : Y
Assume that the covariate processes Z; are time-independent and the total ':

- Ny

s

time at risk and number of uncensored failures are known for each interval and
covariate level. Least squares and weighted least squares estimators of a{™i =
(a(x"),. . .ai,"))' based on such data are given by

oy
e, e

a(t) =(/1w Y'(a)Y(s)ds)—l/I(.) Y'(s)dN(s), teIi™
a(t) =(/1“" y'(,)W(s)y(a)da)"/Im Y'(s)W()dN(s), t ¢ 1™

N it

LN

respective}y, where W(t) is the n x n diagonal matrix having ith diagonal entry
W.(t) = (Ai(t))~! and A;(2) is an estimate of the intensity

»

AN = Z o™ ()Y (2).

j=1
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Ian W. McKeague 7

It is reasonable to expect that if :\,-(t) is chosen appropriately and the mesh of
the partition I{")...Ix) tends to zero at a suitable rate as n — oo, then the
estimate A(-) = |, . &(s)ds satisfies a functional central limit theorem analogous
to Theorem 3.2.

The estimator A;(t) is taken to be

%) =3 al"(@)Y5(),
i=1

where af* = (al*,..,, al*)’ is the piecewise constant approximation to the
smoothed least squares estimator

at(t) = 31:/0‘;((‘;"’>a(,)d,,

where K is a left-continuous kernel function having integral 1, support (0,1]
and b, > 0 is a bandwidth parameter. Suppose that the intervals are chosen
so that 9,0 < to < 1, is always a boundary point of one of them. Define
A() = [, a'™)(s)ds, the piecewise linear approximation to A.

We require the following conditions:

(C1) (Asymptotic stability). For j,k,£ = 1,...,p there exist functions Ly,
Rjke and Vji defined on [0, 1] such that

sup |L;k(t) = L;x(t)] = op(v/min(4y,. .., L)
te[0,1]

- 1
sup |Rjn(t) — Rye(t)|* 0
te[0,1]

e [Vik(t) = Vie(t)| = Op (v/min(Zy, . . ., L)).

(C2) The functions aj, Lk, Vi, J, k = 1,...,p are Lipschits.
(C3) The bandwidth parameter b, and the interval lengths ¢,, ..., {4 satisfy

b2nmin(¢y,..., L) — o

bn

— 0
/min(¢y, .. ., £a)
bn
min(ls, . o la)

PROPOSITION 3.1. (Grouped data case). Suppose that conditions (A3), (B2)-
(B4), (C1)-(C3) hold and the kernel function K has bounded variation. Let
0 < to < 1. Then /n(A — A) converges weakly in D|to, 1P to the p-variate
Gaussian martingale m' of Theorem 3.2.

We refer to McKeague (1987) for a proof of this proposition. Note that the
estimators &, &, A require the total time at risk in each interval at each covariate
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8 Aalen’s Additive Risk Model

level to be available. When only interval _ount data are available, survival ana-
lytic techniques do not apply. In that case, contingency table techniques provide
an alternative approach, see Koch, Johnson and Tolley {1972), Bishop, Fienberg
and Holland (1975), Gilula (1986) and Kiefer (1987).

A grouped data based estimator of the covariance matrix of the limiting Gaussian
martingale m' is given in McKeague (1987). Although it is possible to obtain a
pointwise weak convergence result for the least squares estimator &(t}, we have
not been able to do so for the weighted least squares estimator &(t), or any
smoothed version of it, so a grouped data analogue of Theorem 3.3 is not yet
available.

4. Proofs of Theorems 3.1-3.3.

The following lemma, analogous to Lemma 4.2 of McKeague (1987), is stated
without proof.

LEMMA 4.1. Under conditions (A1) and (A3)
(a) P(L(t) 1s snvertible for allt € [0,1]) — 1,
(b) s{txplllf,‘l(t) — L~1(t)|| 20, where || - || denotes operator norm.
te[0,1

PROOF OF THEOREM 3.1. From (3.2) and (2.2) we can write

Va(A(t) - A) = X (&) - v / J(s)dA(s), (4.9)
where .
() () = — [L=1(s)Y'(s )
X “"«z/f (s)Y"(s)dM(s),

J(t) = I{L(t) is not invertible).
By Lemma 4.1 and conditions (A1), (A3), the last term on the r.h.s. of (4.1)

converges uniformly to zero in probability. It remains to show that X 2m
in D[0,1}?. By Lemma 4.1 there exists a constant C > 0 such that

P(L7'(t) = U(t) forallte0,1]) =1 (4.2)
as n — oo, where U(t) = (U;k(t)) is the p X p matrix with entries
Unn(t) = { (LY (L)l C

otherwise.
Define the process

XM (¢) = %/0 U(s)Y"(s)dM(s)

and note that
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Y
The jth component of X(*) can be written :_
oy

X (¢) = Z/o A ()dMi(s), ;

where

A7) = % i Uju (t) Yan (8)- ’

The local martingales M), ..., M, are local square integrable martingales on the -
time interval [0, 1] and their predictable quadratic variation processes are given A
by ”

-

t
< M;, M; > (t) =/ /\;(s)da and < M;, M, > (t) =0, t#7.
0

The process I-{'(J" ) is locally bounded and predictable so that )-(’(-") is a local
square integrable martingale. The predictable quadratic variation processes of
X X" are given b

1 e Xp given by

t n
<%, %> ) = [ AP s
=1

P p

= z Z E ‘/0 (z—l(3))1'0(ﬁ_l(s))kwﬁuvw(")au(s)ds

u=lv=1w=1

PR L LR L RN

+op (1) ;'
(by (42)) Y
P 3
— Cov(m,(t), mi(t)) as n — oo, }-
h
")
) by the asymptotic stability condition (A1) and Lemma 4.1. The Lindeberg N
' condition ‘i'
1 n
~ - P J
| SO I0AS 0] > )aelo 3
0 =1 5
\ as n — oo, for each € > 0,7 = 1,...,p, is a consequence of :-:
3 -
»’ - A
| swp AP <Cpnt sup |Y,(0) ;
i=1.....n 1=1,...,n 4
{ te[0,1] tel0.1] X
2]
Lo {(by condition (A2)). '-1
Thus, by Rebolledo’s central limit theorem for local square integrable martingales Ii
in the form given by Andersen and Gill (1982, Theorem 1.2}, it follows that 4

X 2 o in D[0,1]°. Combinirg this with (4.3) we obtain that X(™ 2 m in
D(0,1}?, which completes the proof.
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: : 10 Aalen’s Additive Risk Model

-
- LEMMA 4.2. Suppose that conditions (A1)-(A3), (B5) hold, the kernel function
o K has bounded variation, b, — 0 and nb2 — co. Let 0 < ty < 1. Then

N P

. sup |&;(t) - a;(t)|—0.
h teto. 1]

N
) PROOF. Use integration by parts and Theorem 3.1, cf. the proof of Theorem
o 2.2 of McKeague (1987).

Let V (t) denote the px p matrix with entries Vix(t) = %Z}’.—,(t)}’.k(t)W‘(t).
 aat 1=1

(L

LEMMA 4.3. Suppose that the conditions of Theorem 3.2 hold. Then

1
. (a) P(V(t) 1s invertible for all t € [to, 1)) — 1,
» 3 P
g: (b) sup Wilt) - Wi(0) o,
‘t-e{t.(-,‘,‘l']n
. _ P
(c) sup [[V=i(t) - VI(t)]|=o0.

b telto, 1]
e

»

v ProOF. Us: conditions (B1)-(B5), especially the bounded covariates con-
V. dition (B2), and Lemma 4.2. The proof is similar to the proof of Lemma 4.3 of

McKeague (1987).

-:'.:: PROOF OF THEOREM 3.2. We can write

Y

v . t
s VA(A() - 4) = X)) - V& [ I(s)dALs), (4.4)

to

L where

7 (n) — [ pin)

n n

2 X0 =3 [ H (s)dMi(s),

o 1=1%"0

v,

(my - 1 Ain)
4, H. 7 (s) = \/;GU (s),

P
Gi(s) = D(V 4 () ik Vi (s)Wi (s),
b k=1
J(s) = I(V(s) is not invertible).

- By Lemma 4.3(a) and conditions (B1), (B3), the last term on the r.h.s. of (4.4)
:: converges uniformly to zero in probability. It remains to show that X(™) % m’ in "
A7 D{0,1]P. By Lemma 4.3 and conditions (B2), (B4}, (B5), there exists a constant

) C > 0 such that

’u
ied {n) Sin) :

‘ P(G;; (s) = G;;'(s) foralli=1,...,n,5¢[ty,1]) = 1 (4.5)

o where
)

7

e

o

v¢
&

s
B <

v
X
L)

(282
-:

n
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Eu"....'_\'-‘ - - ; : G ;.G-;v‘llff.ﬁsj :; . J . ; ....

W W
a_a W

b

u=1lv=1
(4.10)
where
Vuu(s) = ZYW( )Yiu ()i (")Wz(s) (4.11)
Thus, by Lemma 4.3 and condition (B2),
< & x‘"’>(t)~22[ 3 (5)) (V7 ()ko Ve ()
u=1lv=1
=/ (V~1(s)),kds.
to
Next, sinze
C
su H("' —,
it P | ( )l \/;
u[O 1]
the Lindeberg condition
/ STA ()20 ()AL (5)] > €)d D0 (4.12)
to (=)
B R g S T A T e e Ty, ey ety e e e T e e T

Ian W. McKeague

GMs) il <C
Gm,()_{ ) 165
C otherwise.

Define the processes

AN (s) = fc‘"‘( s), (4.7)

() = Z/ A (5)dMi (). (4.8)

Since flx.(;') is predictable and bounded, ).(J(.") is a local square integrable martin-
gale. Also

sup | XM () = X ()| 50 as n — oo, (4.9)
telto. 1]
where X (") = (Xi"),. . .,X},"))'. The predictable quadratic variation processes
of X{"‘, .. .,X;(,") are given by

< XM, & > / ZH(")(s AL (5)0i(s)ds

to s—1

—ZZ ()5 (7 ™2 () )i o (8)ds + 0 (1),

3
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12 Aalen's Additive Risk Model

as n — oo for each ¢ > 0, is satisfied. Thus, by Rebolledo’s central limit theorem
for local square integrable martingales, XM 2m in D{0, 1]?, and by (4.9), X(*)
has the same limit distribution. This completes the proof.

PROOF OF THEOREM 3.3. Define the smoothed version of a:

0= [ K)o

., ap are assumed to have bounded derivatives in a neighbourhood of

Since ay,..
t,

(nba)}la(t) — a* (&)} = O(nB2)} — 0.
Using (2.2), (3.6) and (3.7) and Lemma 4.3(a) we can write
(nBa)}(&(t) = a”(8) = X™) +0p (1),

where X(™) is the p-dimensional random vector with jth component

n 1
XM =32 /, H (s)dMis),
=1

1

Vb,
) Z(V—I(S))jkyik(s)w.'(s).

H(s) = G5 (s),

t—
6™ (s) = ( It
bn
As in the proof of Theorem 3.2 we truncate G( ") in order to apply Rebolledo’s

central limit theorem. This gives new processes ij-) and H..(J. *) satisfying (4.5)-
(4.7). The Lindeberg condition (4.12) is satisfied since

s ) = 0(\/373_)

2¢{0,1]

and nb, — oo. Since «ay,...,
Lemma 4.3,

a, are bounded in a neighbourhood I; of t, by

sup Vo () = Vo (s)I—P;O,

sel,

(4.13)
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Ian W. McKeague 13

where V,,,(s) is defined by (4.11). Now consider

/ }:H‘"‘(s A (s)Ai(s)ds

to i

EEL(

)(v-*(s)),u(v-*( ks Vo (5)d

o +op(1)
ZZ/ K3(z)(V 1t = 5,2))5u(? 72t = n2)) ko Vun(t = bnz)dz
+op(1)

P, /_ 11 R2(2)dz(V -1 (8) 0

by (4.13) and Lemma 4.3(c). Application of Rebolledo’s central limit theorem
(see Liptser and Shiryayev (1980, Remark 1)) to X(*) gives the result.
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